A Robust Adaptive Beamformer Based on Semidefinite Programming with Quadratic Constraints
نویسندگان
چکیده
منابع مشابه
A Robust Adaptive Beamformer Based on Semidefinite Programming with Quadratic Constraints
A robust beamforming with quadratic constraints, formulated as a semidefinite programming (SDP) problem, is proposed in this paper. With this formulation, the constraints on magnitude response can be easily imposed on the adaptive beamformer. And the non-convex quadratic constraints can be transformed into linear constraints. Therefore, the proposed method can be robust against the steering dir...
متن کاملA Semidefinite Programming Heuristic for Quadratic Programming Problems with Complementarity Constraints
The presence of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with complementarity constraints can be relaxed to give a semidefinite programming problem. The solution to this relaxation can be used to generate feasible solutions to the complementarity constraints. A quadratic programming problem is solved for each of these...
متن کاملRobust Adaptive LCMV Beamformer Based on an Iterative Suboptimal Solution
The main drawback of closed-form solution of linearly constrained minimum variance (CF-LCMV) beamformer is the dilemma of acquiring long observation time for stable covariance matrix estimates and short observation time to track dynamic behavior of targets, leading to poor performance including low signal-noise-ratio (SNR), low jammer-to-noise ratios (JNRs) and small number of snapshots. Additi...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملOn Nonconvex Quadratic Programming with Box Constraints
Non-Convex Quadratic Programming with Box Constraints is a fundamental NP-hard global optimisation problem. Recently, some authors have studied a certain family of convex sets associated with this problem. We prove several fundamental results concerned with these convex sets: we determine their dimension, characterise their extreme points and vertices, show their invariance under certain affine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Hybrid Information Technology
سال: 2015
ISSN: 1738-9968
DOI: 10.14257/ijhit.2015.8.2.32